

第468回GMSI公開セミナー／第213回WINGSセミナー

Programmable multifunctional materials and structures: Design, realization, and validation

Dr. X. Shelly Zhang

David C. Crawford Faculty Scholar and Associate Professor

Department of Civil and Environmental Engineering (CEE),
Department of Mechanical Science and Engineering (MechSE),
University of Illinois at Urbana-Champaign

Date: Friday, December 26, 2025 13:00-14:00

Venue: Faculty of Engineering Bldg. 2, Room 31A

Abstract: Programmable materials and structures hold great potential for various applications, such as robotics, biomedical devices, and civil structures. The rational design, physical realization, and validation of programmed behaviors in these systems play important roles in enabling functional devices. To encode desired mechanical functionality into structures, we propose a multi-material multi-objective topology optimization approach to inverse design composite structures that achieve complex target mechanical responses under large deformations. The multi-material framework simultaneously optimizes both the geometry, material heterogeneity, and architecture to achieve target behaviors and functionalities. A library of diverse designs is created, showcasing a wide range of precisely programmed nonlinear responses, such as multi-bulking and multi-plateau.

In general, the properties of materials and structures typically remain fixed after being constructed. To enable reprogrammable behaviors, we develop a multi-physics topology optimization approach to discover magneto-active and temperature-active materials that achieve tunable buckling and switchable shape morphing, controlled by magnetic fields and temperature fields, respectively. The obtained systems exhibit one response under one stimulus and switch to a distinct response by applying another stimulus.

To bridge the gap between simulation and fabrication, we explore multi-material manufacturing techniques, introduce advanced path generation methods, and develop direct ink writing (DIW) techniques to fabricate a suite of mechanical, magnetic, and thermal metamaterials and metastructures and experimentally validate their programmed behaviors. The excellent agreement among target, simulation, and experiment demonstrates that the proposed optimization-driven framework, when integrated with hybrid manufacturing techniques, has the potential to systematically design, inform, and create innovative multi-functional materials and structures for various engineering applications.

Bio: Dr. Xiaojia Shelly Zhang is a David C. Crawford Faculty Scholar and Associate Professor at the Department of Civil and Environmental Engineering and the Department of Mechanical Science and Engineering at the University of Illinois at Urbana Champaign (UIUC). She directs the MISSION (Multi-functional Structures and Systems design OptimizatioN) Laboratory. Dr. Zhang holds B.S. and M.S. degrees from UIUC and a Ph.D. degree from Georgia Tech. Her research explores multi-physics topology optimization, inverse design, stochastic learning algorithms, and additive manufacturing to develop multi-functional, sustainable, and resilient materials, structures, and robots for applications at different scales. She is the recipient of the National Science Foundation CAREER Award (2021), the ASME Journal of Applied Mechanics Award (2022), the DARPA Young Faculty Award (2022), the AFOSR Young Investigator Award (2023), the Leonardo da Vinci Award from ASCE (2024), the DARPA Director's Fellowship (2024), UIUC Campus Distinguished Promotion Award (2025), the Thomas J.R. Hughes Young Investigator Award from ASME (2025), the ASME Henry Hess Early Career Publication Award (2025), the Haftka Young Investigator Award from International Society for Structural and Multidisciplinary Optimization (2025). Dr. Zhang serves on the Executive Committee of the International Society of Structural and Multidisciplinary Optimization (ISSMO) and is a Review Editor for the *Journal of Structural and Multidisciplinary Optimization* and an Associate Editor for the *Journal of Applied Mechanics*.

主催:

東京大学大学院工学系研究科専攻間横断型教育プログラム 機械システム・イノベーション (GMSI)

未来社会協創国際卓越大学院 (WINGS CFS)

量子・半導体科学技術国際卓越大学院 (WINGS-QSTEP)

統合物質・科学国際卓越大学院 (MERIT-WINGS)

高齢社会総合研究国際卓越大学院 (WINGS-GLAFS)

「グリーントランスマネージメント(GX)を先導する高度人材育成」プロジェクト (SPRING GX)

本件連絡先:

東京大学大学院工学系研究科機械工学専攻 準教授 山田 崇恭

GMSI事務局 E-mail: office@gmsi.t.u-tokyo.ac.jp Phone: 03-5841-0696